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Wall-based Actuation for Transition Delay

and Drag Reduction

Abstract

Subjecting a boundary layer to sudden or changing strain can have a profound
effect on the flow. In turbulent boundary layers, oscillating the wall has been shown in
previous studies as a viable mechanism to reduce drag. At lower Reynolds numbers,
and in particular in the transition regime, the flow response is complex. On the one
hand, the three dimensionality of the base state can lead to new instabilities. On the
other hand, the streaks which are often observed in bypass transition can be weakened,
akin to observations in fully-turbulent shear flows. This work investigates the influence
of spanwise wall oscillation on bypass transition in zero-pressure-gradient boundary
layers. Direct numerical simulations are performed in order to examine the impact
of the wall forcing on the non-linear transition process. The simulations demonstrate
that appropriate choice of the oscillation amplitude and frequency can delay transition.
The non-linear computations are complemented by linear analysis of a simple model
that explains the influence of the unsteady shear on the penetration of free-stream
vortical disturbances into the boundary layer. This effect, and the weaker streaks in
the pre-transitional flow, ultimately lead to a delay in the secondary instability of the
streaky base flow and a downstream shift in transition onset.

1 Introduction

Unsteady wall shear has been shown to effectively reduce turbulent drag in pipe flows,
both in numerical simulations and experiments (Quadrio & Sibilla, 2000; Quadrio et al.,
2009). These studies have, however, been limited to wall-bounded flows. Investigations
of boundary layers are less common in the literature. In addition, none of the previous
efforts have considered the influence of wall oscillation on the full process of transi-
tion to turbulence in boundary layers. The current work therefore provides the first
assessment of the effectiveness of wall actuation on laminar-to-turbulence transition.

Transition mechanisms are generally divided into two classes: The first is known as
natural, or orderly, transition and is only observed in controlled environments where
the noise level is less than 0.5% of the mean speed. At these low-noise levels, the initial
disturbance in a zero-pressure-gradient boundary layer is a Tollmien-Schlichting, linear
instability wave. These waves are unstable beyond a critical Reynolds number, Rex ≃
9× 103 based on the distance from the leading edge. Full breakdown to turbulence is
reached much further downstream at Rex ≃ 3× 106.

At sub-critical Reynolds numbers, transition to turbulence can take place in pres-
ence of appreciable background noise levels. In this case, the breakdown to turbu-
lence is termed bypass transition, because it bypasses the orderly route and Tollmien-
Schlichting waves (for a recent review, see Durbin & Wu (2007); Zaki (2013)). The
bypass process can be viewed as a three-stage process: Firstly, free-stream vortical
disturbances penetrate the boundary layer shear. Secondly, those disturbances which
penetrate the shear lead to the amplification of boundary layer streaks, or Klebanoff
modes. The streaks are streamwise-elongated regions of high amplitude velocity per-
turbation. The final stage is marked by the secondary instability and non-linear break-
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down of the streaks into turbulent patches. An effective strategy to delay transition to
turbulence can attempt to disrupt at least one of the three stages.

The first stage of bypass transition concerns the mechanism whereby free-stream
disturbances penetrate the shear. In the inviscid limit, the entire spectrum of free-
stream perturbations decays exponentially at the edge of the boundary layer. This fil-
tering process was attributed to the shear by Hunt & Carruthers (1990); Hunt & Durbin
(1999), and the term shear sheltering has been used to describe the effect. At finite
Reynolds numbers, the boundary layer appears to act as a low-pass filter: While the
free-stream disturbance is broadband, the disturbances inside the shear are primarily
low frequency. A number of studies have attempted to explain this phenomenology
(Jacobs & Durbin, 1998; Zaki & Saha, 2009). The study by Zaki & Saha (2009) pro-
vides a physical explanation: Free-stream vortical disturbances convect at the free-
stream speed relative to an observer inside the shear. During the characteristic diffu-
sion time, the observer experiences the influence of a number of waves that overtake
him. When this number is much less than unity, the observer can in fact “resolve”
the free-stream disturbance. This is the case when the free-stream disturbance is low
frequency. On the other hand, for high-frequency disturbances, many waves overtake
the observer in a diffusive timescale. The net effect, or average, therefore vanishes
and high-frequency disturbance are hence filtered, or un-resolved, due to the shear.
The model problem was based on the Orr-Sommerfeld operator, and the competition
between the shear and viscous diffusion.

Low-frequency perturbations inside the boundary layer amplify to appreciable am-
plitudes, and are termed streaks due to their elongated appearance. They have also
been known as Klebanoff modes – a terminology due to Morkovin & Obremski (1969) in
recognition of earlier experimental contributions (Klebanoff, 1971). The mechanism for
the amplification of streaks is well established in the literature (Phillips, 1969; Landahl,
1980). A physical interpretation was provided by Schmid & Henningson (2000): The
wall-normal displacement, or lift up, of the mean flow leads high amplitude streaks. The
work by Zaki & Durbin (2005, 2006) provided an alternative view: A three-dimensional
vertical velocity perturbation within the boundary layer decays monotonically at sub-
critical Reynolds numbers. However, it resonantly forces the generation of a wall-
normal vorticity response, which in the low-frequency limit has the appearance of
streaks. Linear optimization over all possible initial disturbances demonstrates that
a streamwise vortex is most effective at generating streaks (Butler & Farrell, 1992;
Schmid & Henningson, 2000; Andersson et al., 1999). The optimization also predicts
the spanwise size of the vortex to be on the order of the boundary layer thickness,
which matches the observation of naturally occurring streaks in boundary layers be-
neath free-stream turbulence.

The role of streaks in breakdown to turbulence was not entirely evident in the early
literature. Empirical observations suggested that low-speed streaks become unstable
when they are lifted towards the edge of the boundary layer. There, the streaks are
buffeted by the high-frequency disturbances in the free stream, become unstable and
breakdown to turbulence (Jacobs & Durbin, 2001). Another mechanism that is ini-
tiated near the wall was reported by Nagarajan et al. (2007). These descriptions of
breakdown mechanisms, based on direct numerical simulations, were also affirmed by
a number of experimental observations (Westin et al., 1994; Matsubara & Alfredsson,
2001; Nolan et al., 2010; Mandal et al., 2010). In addition, streak identification and
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tracking techniques have demonstrated that only the highest amplitude streaks host
the onset of turbulent spots (Nolan & Zaki, 2013). Secondary instability analysis has
provided a theoretical explanation of the influence of streaks on the flow stability.
Andersson et al. (2001) performed inviscid stability analysis of streaky boundary lay-
ers. His base state was computed from direct numerical simulations of the boundary
layer response to linearly-optimal, steady streaks. The resulting sinuous and varicose
modes were examined, and the threshold for instability was recorded at a critical streak
amplitude on the order of 27% of the free-stream speed. Vaughan & Zaki (2011) sub-
sequently performed viscous analysis of streaky boundary layers. His base state was
obtained from direct numerical simulations of the boundary layer response to inflow
free-stream modes. Therefore, the base state streaks were unsteady, but nonetheless
repeated in the span at a fundamental wavenumber. The analysis by Vaughan & Zaki
(2011) led to an interesting discovery. The streaky boundary layer has two modes of
instability: An outer mode which is related to the instability of lifted low-speed streaks
which were described by Jacobs & Durbin (2001); An inner mode, whose critical layer
is near the wall, and which explains the observations by Nagarajan et al. (2007). Most
recently, Hack & Zaki (2014) examined the stability of streaky boundary layers be-
neath broadband free-stream turbulence. The base state was therefore more realistic
than any previous study: a boundary layer with a large number of streaks, all with
different shapes, orientations and amplitudes. Hack & Zaki (2014) demonstrated that
their analysis can identify the particular streak that becomes unstable and hosts the
onset of turbulence. Each such event leads to the formation of a turbulence spot, and
these patches spread and merge to form the fully-turbulent boundary layer.

In this work, the influence of spanwise wall oscillation on the above progression of
event, and the bypass process, is examined. A discussion of the influence of the spanwise
shear on the penetration of free-stream vortical disturbances into the boundary layer
is provided. In addition, using direct numerical simulations, the impact on the full
non-linear problem is studied. This includes the influence of the wall forcing on the
amplification of streaks, their breakdown to turbulence, and the formation of the fully-
turbulent boundary layer downstream.

2 Direct numerical simulations

A schematic of the computational domain for the direct numerical simulations is shown
in figure 1. The dashed line in the figure marks the boundary of the simulation domain.
It starts at Rθ = 80, downstream of the leading edge. This approach reduced the
computational cost that would be required to resolve the leading edge region. However,
appropriate boundary conditions are now required in order to represent the free-stream
turbulence at this location. The inflow condition adopted in this work is based on the
work by Jacobs & Durbin (2001), where synthetic inflow turbulence is expressed as a
superposition of eigenmodes of the linear perturbation equations. The inlet free-stream
turbulence intensity and lengthscale can be prescribed. Downstream of the inlet plane,
the full non-linear Navier-Stokes equations are solved. Therefore, all non-parallel and
non-linear effects are fully represented in the simulations of the downstream evolution
of the boundary layer.

The size of the simulation domain, normalized by the inlet δ99, is 1200×30×40 in the
streamwise, wall-normal, and spanwise directions. The grid resolution is the same as
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Figure 1: Schematic of the DNS domain. The domain boundary is indicated by the dashed line.
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Figure 2: Free-stream decay of turbulence: (a) Rms of the velocity fluctuations u′ (dashed), v′ (dash-dotted),
w′ (dash-dot-dotted) versus Reynolds number Rex; (b) Turbulent length scale Lk normalized by the local
boundary layer thickness δ versus Reynolds number Rex.

that adopted by Jacobs & Durbin (2001) who performed an extensive grid refinement
study for simulation of bypass transition. In order to ensure zero-pressure-gradient
in the streamwise direction, a suction velocity is applied at the top of the domain in
order to make up for the growth of the boundary layer. Periodicity is enforced in the
spanwise direction, and a convective outflow condition is applied at the exit boundary
of the domain. At the bottom wall, no-slip and no-penetration conditions are applied
to the streamwise, u, and wall-normal, v, components of the velocity vector. The
spanwise component is subjected to a harmonic motion, w(y = 0) = W0 sin(2πt/T ).
The oscillation of the bottom wall is assumed to start at the inlet of the computation
domain, and that the flow upstream follows the Blasius solution.

In bypass transition, it is important to characterize the free-stream turbulence. Two
main quantities that dictate the transition location inside the boundary layer are the
free-stream turbulence intensity, Tu and the lengthscale, Lk. These two quantities are
plotted in figure 2 versus the downstream Reynolds number. It is seen that the free-
stream turbulence decays from an inflow value of approximately 3%, and the turbulence
lengthscale is approximately 2δ at the inlet. In figure 2, the lengthscale is normalized
by the local boundary layer thickness, and hence appears to decay because the increase
in δ(x) is faster than the growth of Lk.

Since the base flow in the current simulations is time dependent, it is important to
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Figure 3: (a) Skin friction coefficient in the (solid) reference simulation and with wall oscillation, W = 0.25.
The oscillation periods considered are (gray dash-dotted) T = 10; (gray dashed) T = 40; (gray dash-
dot-dotted) T = 67; (black dash-dotted) T = 100; (dashed) T = 200; and (dash-dot-dotted) T = 400;
(b) Reynolds number at onset and end of transition, Rex, t1 and Rex t2 respectively.

introduce the triple decomposition,

a =

〈a〉ϕ︷ ︸︸ ︷
ā+ ãφ + a′ (1)

where ā is the spanwise- and time-average, ãϕ is the time-periodic component, and a′ is
the stochastic fluctuation. The term 〈a〉ϕ is the phase average, where ϕ is determined
by the phase of the wall oscillation.

A summary of the outcome of the DNS is given in figure 3, where the skin friction
is plotted versus the downstream Reynolds number. The reference curve shows that
transition onset is near Rex = 2 × 105. When the wall oscillation is introduced, the
transition location changes, and also the transition length is altered. All the curves
are at the same amplitude of wall oscillation, W0 = 0.25. As the period of oscillation
is increased from T = 10 to T = 200, the transition onset location moves downstream
and the transition length is extended. At T = 400, the transition onset is suddenly
shifted upstream of the reference case. Figure 3 in the right panel shows the Reynolds
number at the start and end of transition.

A comparison of the perturbation field inside the reference simulation and the
optimal case (W0 = 0.25, T = 200) is provided in figure 4. The top views show the
streamwise stochastic perturbation velocity, u′. It should be noted that the length
of the two panels are different. In the top panel, the reference simulation captures
the well-established stages of bypass breakdown: Only low-frequency disturbances are
observed inside the boundary layer. These streaks reach high amplitude, and become
host for the onset of localized turbulence patches. Fully-turbulent flow is observed near
x = 400. In the case with wall oscillation, the perturbation field is much less energetic,
and elongated streaks are nearly absent in the pre-transition region. A localized spot
inception event is observed near x = 550, and fully-turbulent flow is achieved farther
downstream, relative to the reference case.

The observations from the instantaneous realizations in figure 4 are supported by
the root-mean-square of the perturbation velocity, u′rms, within the boundary layer in
figure 5. A comparison of the reference and optimal cases is provided in the figure.
In the reference case, the root-mean-square shows amplification of the disturbance in-
side the boundary layer, near y/δ(x) ≃ 0.4. Further downstream, the location of the
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Figure 4: Top views of the streamwise velocity disturbance inside the boundary layer, |u′| < 0.2. Top:
reference simulations without wall oscillation. Bottom: optimal wall oscillation frequency.
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Figure 6: Contours of the joint probability density functions for u′ and v′. At left, the joint p.d.f. is evaluated
in the free stream and inside the boundary layer at right, y/δ = 0.4. Black: reference simulation; Gray:
optimal wall oscillation frequency.

maximum shifts towards the wall. This shift towards coincides with the laminar-to-
turbulence transition process. In comparison, the case with wall oscillation is markedly
different. The initial energy amplification is substantially reduced. This weaker am-
plification of the disturbance in the boundary layer is symptomatic of weaker streaks
in presence of wall actuation. The disturbance level inside the boundary layer remains
weak far downstream of the inlet, relative to the reference case. Near Rex ∼ 4 × 105,
a sudden shift towards a near-wall maximum is observed.

The reduction in u′ can explain the delay in transition. In the canonical bypass
scenario, Nolan & Zaki (2013) demonstrated that spot inception is localized on streaks
that reach high amplitude, Au > 0.2U∞. Furthermore, linear analyses have also
shown that the growth rate of the secondary instability of the streaky base state de-
pends on the amplitude of the streaks (Andersson et al., 2001; Vaughan & Zaki, 2011;
Hack & Zaki, 2014). As a result, a weaker root-mean-square disturbance in the case of
wall oscillation is consistent with a lower likelihood of streak instability and breakdown
to turbulence.

The lower streak amplitude in the controlled flow hints to a weakening in the lift-up
mechanism, for example due to a smaller wall-normal velocity perturbations inside the
shear. A joint probability density function of the (u′, v′) perturbations is provided in
figure 6. In the free stream (left panel), the disturbances are isotropic which leads to the
circular shape of the joint probability density function. Inside the shear (right panel),
the elongated shape of the contours is indicative of the amplification of the streaks by
ejections (second quadrant) and sweeps (fourth quadrant). The figure demonstrates
that, inside the boundary layer, the vertical velocity disturbances are generally of lower
amplitude in the case where the wall oscillation is active, and the resulting streaks are
also lower amplitude than in the reference simulation. In the following section, the
influence of spanwise wall oscillation on the eigen-spectrum of the boundary layer is
examined. The linear analysis provides a possible explanation of the weakening of the
vertical velocity perturbation field.

9

Distribution A:  Approved for public release; distribution is unlimited.



3 Eigen-spectrum of the linear perturbation equations

y

z

x

U∞

W(y,t)

W 0
 cos(Ft)

U(y)

Figure 7: Illustration of the base flow, U = (U, 0,W (y, t))T

A schematic of the base flow adopted in this section is shown in figure 7. In addition
to the Blasius profile in the streamwise direction, we include a time-harmonic spanwise
flow W (y, t) which is a solution to the Stokes second problem. The complete flow is
given by,

U = (U (y) , 0,W (y, t))T .

The analytical expression for the spanwise component is given by,

W (y, t) = W0 exp

(
−

√
Reπ

T
y

)
cos

(
2π

T
t−

√
Reπ

T
y

)
, (2)

where the magnitude of the wall speed is W0 and the period of oscillation is T . In
the above expression, and throughout this work, the Reynolds number is based on the
streamwise component of the flow, Re ≡ U∞δ/ν = 103, where δ is the 99% boundary
layer thickness and U∞ is the Blasius free-stream speed.

The equations which govern the time-evolution of a small perturbation, u′ =
(u′, v′, w′)T , about the above mean flow are derived using standard techniques. First,
one assumes the velocity is decomposed into mean and perturbation components u =
U + u′. The equations that govern u′ are linearized by neglecting products of pertur-
bations. The final outcome can be cast in a form that resembles the Orr-Sommerfeld
equation, for the normal-velocity perturbation,

[(
∂

∂t
+ U

∂

∂x
+W

∂

∂z

)
∇2 −

∂2U

∂y2
∂

∂x
−

∂2W

∂y2
∂

∂z
−

1

Re
∇4

]
v′ = 0. (3)

Similar to the original Orr-Sommerfeld equation, the coefficient in equation 3 are ho-
mogeneous in the streamwise and spanwise directions, and therefore a normal-mode
assumption is invoked in those dimensions,

v′ (x, y, z, t) = v (y, t) exp (ikxx) exp (ikzz) . (4)

Since we consider a time-harmonic base flow, W (y, t), the perturbation can be expressed
as a Floquet expansion in terms of the fundamental frequency F = 2π/T of the base
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flow,

v (y, t) = exp (σt)
∞∑

n=−∞

vn (y) exp (inF t) . (5)

In the temporal problem, the exponent σ = σr + iσi is the complex eigenvalue, with σr
giving the growth rate and σi is a frequency shift. The final form of the disturbance
equation is therefore,

∞∑

n=−∞

[
(−iσ + nF + kxU + kzW )

(
D2 − κ2

)
− kx

∂2U

∂y2
− kz

∂2W

∂y2

+i
1

Re

(
∂2

∂y2
− κ2

)2
]
exp (i (−σ + nF ) t) vn (y) = 0, (6)

with κ2 ≡ k2x + k2z . The eigenvalues of σ are the particular values of the complex
frequency that yield solutions of the above system. The solution vn is the Floquet
representation of the eigenfunction v, as described by equation (5). Note that the
expression of vn is not independent of n±1: if the base flow is time-harmonic, products
of W (y, t) and vn couple each Floquet component n to n±1. Therefore, the eigenvalue
problem becomes a system of coupled equations for all the Floquet components.

The continuous spectrum

In order to study free-stream vortical disturbances, we focus our attention to the con-
tinuous spectrum of the disturbance equations. The modes which belong to the con-
tinuous branch are obtained by taking the limit y → ∞ of the governing equations. In
that limit, the base flow derivatives vanish, and it is possible to obtain an analytical
form of the dispersion relation, by assuming that the disturbance is oscillatory in the
free stream. Substituting U = U∞ and W = ∂2U

∂y2
= ∂2W

∂y2
= 0 in equations 6, the

disturbance in the free stream is governed by,
[
(−iσ + nF + kxU)

(
D2 − κ2

)
+ i

1

Re

(
D2 − κ2

)2
]
v∞n = 0. (7)

In the above, n is a parameter and we focus on a particular, yet arbitrary, value n = ñ.
This allows us to solve for the eigenvalue σ, which is shared among all components
of the Floquet expansion, and the corresponding eigenfunction is a summation of all
the Floquet components. While v∞n=ñ, is finite and bounded for the continuous modes,
the remaining terms in the expansion, v∞n 6=ñ, must vanish in the fee stream in order to
satisfy equation7.

The dispersion relation is obtain using n = ñ in the above equation,
[
(−iσ + ñF + kxU)

(
D2 − κ2

)
+ i

1

Re

(
D2 − κ2

)2
]
v∞ñ = 0, (8)

and seeking solutions of the form v∞ñ (y) =
∑

4

j=1
Cj exp (λjy), where λj are the roots

of the characteristic given by,

λ2
1,2 = κ2

λ2
3,4 = κ2 + iRe (−iσ + ñF + kxU∞) .
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In order to ensure oscillatory behavior of the eigenfunctions, we set λ2
3,4 = −k2y, where

ky is a real valued parameter, which represents the wall-normal wavenumber of the
n = ñ Floquet mode. The resulting value of σ is therefore given by the dispersion
relation,

σ = −i (kxU∞ + ñF )−
1

Re

(
k2x + k2y + k2z

)
. (9)

The above relation shows that multiple continuous branches exist. Each branch is
traversed by changing the continuous parameter ky; Furthermore, the branches are
separated by the frequency F of the base flow, and each branch is obtained by selecting
a different value of ñ. A schematic of the eigenvalue spectrum of the unsteady base flow
is shown in figure 8: discrete modes are shown by circles and the continuous branches
are marked by crosses.

σr

σi

{

-1 0 1 2... ...-2

F

n
~

Figure 8: Schematic of the Floquet eigen-spectrum. Eigenvalues of the (◦) discrete and (∗) contin-
uous spectra.

Once the eigenvalue is computed from equation 9, the eigenfunctions are evaluated
as solutions to equation 6. This requires four boundary conditions on vn, two at the
wall and two in the free stream. The no-slip conditions at the wall yield,

vn (y = 0) = 0, (10)

dvn
dy

(y = 0) = 0 ∀ n. (11)

In the free stream, only vn=ñ satisfies the boundedness condition which, following
Jacobs & Durbin (1998), is evaluated at two points y1 and y2 in the free stream and
has the form,

v∞ñ =1, (12)
(
D2v∞ñ + k2yv

∞
ñ

)
y1(

D2v∞ñ + k2yv
∞
ñ

)
y2

=exp (ky (y2 − y1)) . (13)

All other Floquet components, v∞n 6=ñ, vanish in the free stream since they must satisfy
equation 7 while σ was obtained using n = ñ only.

12

Distribution A:  Approved for public release; distribution is unlimited.



−1 0 1
0

1

2

3

4

5

v
ñ
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Figure 9: Selected components vn of the Floquet expansion for T = 40, W0 = 0.25U∞. (a) n = ñ;
(b) n = ñ± 1; (c) n = ñ± 2; (d) n = ñ± 6; ( ) Real component; ( ) imaginary component

The eigenvalue problem 6 subject to the above boundary conditions is solved using a
Chebyshev discretization, using the methodology described by Liu et al. (2008a ,b) and
Vaughan & Zaki (2011). An example of the Floquet modes for a time-periodic base flow
is shown in figure 9. Only the zeroth component, (ñ), is oscillatory in the free stream
while all other Floquet components, n 6= ñ, vanish in the free stream. Within the
boundary layer, only the zeroth and first harmonic, ñ and ñ±1, contribute significantly
to the energy within the shear; higher harmonics are relatively inappreciable.

Modal Sheltering

In a streamwise, Blasius boundary layer, low-frequency continuous modes are known
to penetrate deepest into the shear (Zaki & Saha, 2009). These elongated disturbances
are responsible for the generation of boundary layer streaks, and hence have received
a great deal of attention in the literature. Introducing spanwise, unsteady flow can,
however, alter the ability of these modes to penetrate the boundary layer. An example
is shown in figure 10 where the same low-frequency mode is evaluated in presence of
unsteady base flow, W (y, t). As the period of the base flow is increased, the Stokes layer
thickness increases and the additional shear enhances the sheltering characteristics of
the base flow.

In order to quantify the ability of unsteady wall shear to shelter the boundary layer
from free-stream vortical forcing, we introduce a “sheltering parameter”, s, where

s ≡

∫ δ

0

v∞ − v (y)

v∞
dy,

and v∞ is the average free-stream amplitude of the eigenfunction. The sheltering
parameter, s, tends to zero when the boundary layer is permeable to the free-stream
mode and unity when it is perfectly sheltered. Figure 11 shows contours of s over a wide
range of wavenumber vector (kx, kz) for Blasius flow (without unsteady shear). In the
low-frequency limit, or kx → 0, the boundary layer is susceptible to disturbances and
sheltering vanishes. In this limit, sheltering is insensitive to the spanwise wavenumber,
kz.
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Figure 10: Modal sheltering for (a) Blasius and (b – d) Stokes-Blasius flow. The dotted line marks
the thickness of the Stokes layer. W0 = 0.25U∞, T = {4, 40, 400}, dStokes/δ = {0.16, 0.52, 1.64};
( ) real and ( ) imaginary components of the eigenfunction.

The influence of unsteady base-flow motion, W (y, t), is shown in figure 12. Shelter-
ing becomes dependent on the spanwise wavenumber, kz, with enhanced sheltering for
large kz values. In the limit of low wavenumber vector, (kx, kz), sheltering is dependent
on the ratio of the two wavenumbers, or modal orientation.
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Figure 11: Quantitative evaluation of modal sheltering for Blasius flow; lines denote levels from
0.125 to 0.875 with an increment of 0.125

Energy Sheltering

In order to quantify the ability of spanwise, unsteady motion to enhance shear-sheltering,
we evaluate the fraction of free-stream energy that penetrates the boundary layer shear
for different parameters of the Stokes-like wall layer. The free-stream turbulence is

14

Distribution A:  Approved for public release; distribution is unlimited.



10
−3

10
−1

10
1

10
−3

10
−1

10
1

10
3

kx

k
z

0.875

0.125

Figure 12: Quantitative evaluation of modal sheltering for combined Stokes-Blasius flow of T = 100,
W0 = 0.25U∞; lines denote levels from 0.125 to 0.875 with an increment of 0.125

modeled using a superposition of continuous Orr–Sommerfeld and Squire modes, fol-
lowing the approach first introduced by Jacobs & Durbin (2001). The turbulence is
expanded in terms of Fourier modes in the spanwise and temporal dimensions, and is
expanded in terms of continuous-spectrum modes in the wall-normal direction. The
latter are oscillatory in the free stream, and therefore resemble a Fourier expansion.
As a result, in the free stream, the disturbance behavior is of the form,

v′ ∼ v̂ exp (i (kxx+ kyy + kzz)) ,

η′ ∼ η̂ exp (i (kxx+ kyy + kzz)) ,

where η ≡ ∂u/∂z−∂w/∂x is the wall-normal vorticity. Note, however, that as the wall
is approached, the Orr–Sommerfeld and Squire modes decay in a manner consistent
with the linear perturbation equations.

Following the work by Jacobs & Durbin (2001), we adopt the scaling v̂ = −iA
√

k2x + k2z/k
and η̂ = −iB

√
k2x + k2z . Using continuity and the definition of the wall-normal vorticity,

the following expressions for the modal coefficients are obtained,

û =
iAkxky

k
√

k2x + k2z
+

Bkz
k2x + k2z

,

v̂ =− i
A
√

k2x + k2z
k

,

ŵ =
ikykzA

k
√

k2x + k2z
−

Bkx
k2x + k2z

, (14)

where k ≡
√

k2x + k2y + k2z . A Von Karman spectrum is assumed (Von Kármán, 1948),

E (k) =
L5k4

C
(
1 + (kL)2

)17/6 ,
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Figure 13: Normalized von Karman-weighted modal energy within the boundary layer for ky = π;
◦, W0 = 0.1U∞; �, W0 = 0.2U∞; ⋄, W0 = 0.4U∞

where L = 55C
9π L11 and C = 0.6884. The characteristic lengthscale of the free-stream

turbulence is here assumed to be L11 = 1, i.e. equal to the boundary layer thickness.
Furthermore, the total energy,

∫∞
0

E (k) dk = 3/2. The expressions for A and B are
given by,

A =F exp (iθ1) cos γ

B =F exp (iθ2) sin γ,

where F2 (k) ≡ E (k) /
(
2πk2

)
; the angles θ1, θ2 and γ are random and uniformly

distributed (Rogallo, 1981).
Since we are primarily concerned with the wall-normal component of the free-stream

vortical spectrum, we focus on the expression for the energy contained in v(k),

ρv (k) =
1

2

E(k)

4πk2
k2x + k2z

k2
.

The total energy in the wall-normal velocity is therefore,

ǫv =

∫ ∞

0

∫ ∞

0

∫ ∞

0

ρv (k) dkx dky dkz = 1/2.

We further restrict our results to the case where k̃y = π, because these modes
have a wall-normal characteristic scale on the order of the boundary layer thickness.
Smaller disturbance also penetrate the shear, but are viscously damped, while larger
disturbances are blocked by the wall. With the assumption, the total energy in k̃y
within the shear can be computed from the expression,

ǫ
v k̃y

=
1

δ

∫ δ

0

∫

kx

∫

kz

ρv (k) ‖v (y; k) ‖dkz dkxdy.

In order to compare the penetration of free-stream energy into the shear for cases with
wall oscillation relative to the simple Blasius profile, we compute, ǫrel

v k̃y
≡ ǫ

v k̃y
/ǫBlasius

v k̃y
,

which is shown in figure 13. Increasing the period or amplitude of wall oscillation has
an adverse effect on the fraction of free-stream vortical disturbance that penetrates

16

Distribution A:  Approved for public release; distribution is unlimited.



near the wall: Longer periods of oscillation yield a thicker spanwise shear layer, which
enhances sheltering away from the wall; Increasing the amplitude of oscillation also
increases the level of shear, and hence sheltering.

The wall oscillation, therefore, reduces the total energy that penetrates the bound-
ary layer. The continual change in the direction of the shear also changes the por-
tion of the free-stream spectrum that reaches the near-wall flow (Hack & Zaki, 2012).
These results are consistent with the observations from the direct numerical simula-
tions where the v′ perturbations were weaker inside the boundary layer in the case with
wall oscillation, and the streaks were lower in amplitude in comparison to the reference
simulations. The overall impact on transition in the optimal case was a downstream
shift in the onset of breakdown to turbulence, and an extended transition length.

4 Conclusions

Bypass transition to turbulence is often divided into three stages. First, external distur-
bances from the free stream penetrate the boundary layer. Second, these disturbances
lead to a boundary layer response, often in the form of amplifying streaks with high
streamwise velocity amplitude. The third and final stage is the secondary instability
of the streaky base state which leads to the onset of turbulent motion. Once turbulent
spots are formed, their growth and merging to make up the fully-turbulent boundary
layer is inevitable in zero-pressure-gradient flows.

Direct numerical simulations were performed in order to assess the influence of
spanwise wall oscillation on the proceedings of bypass transition. Particular choice of
the oscillation amplitude and frequency can weaken the disturbance field in the pre-
transitional boundary layer. Specifically, the streaks that host the onset of secondary
instability and the inception of turbulence spots are substantially reduced in amplitude
with the application of the forcing. This behavior is due to a weakening in the lift-up
mechanism.

Linear theory was applied in order to assess changes in the eigen-spectrum of the
boundary layer due to the presence of wall oscillation. It was demonstrated that wall
oscillation can indeed enhance shear sheltering. In general, the fraction of free-stream
energy that penetrates the boundary layer diminishes with wall oscillation. In addition,
while a simple Blasius boundary layer is susceptible to low-frequency disturbances from
the free stream, the unsteady Blasius-Stokes flow is relatively more immune to these
perturbations. Instead, disturbances whose wavenumber vector (kx, kz) is aligned with
the shear (U ′,W ′) are more likely to penetrate the near-wall region (Hack & Zaki,
2012).

When the streaks are lower in amplitude, the flow is more stable and transition
onset is delayed farther downstream than in the reference simulation. In addition,
the transition length is longer in the streamwise direction in these cases. It should
be cautioned, however, that varying the oscillation amplitude or frequency can also
promote instability, and cause transition onset to move upstream, even ahead of the
original transition location of the reference simulation.
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